2022高中必背88個(gè)數(shù)學(xué)公式有哪些,小編整理了相關(guān)信息,希望會(huì)對(duì)大家有所幫助!
圓的公式
1、圓體積=4/3(pi)(r^3)
2、面積=(pi)(r^2)
3、周長(zhǎng)=2(pi)r
4、圓的標(biāo)準(zhǔn)方程(x-a)2+(y-b)2=r2【(a,b)是圓心坐標(biāo)】
5、圓的一般方程x2+y2+dx+ey+f=0【d2+e2-4f>0】
橢圓公式
1、橢圓周長(zhǎng)公式:l=2πb+4(a-b)
2、橢圓周長(zhǎng)定理:橢圓的周長(zhǎng)等于該橢圓短半軸,長(zhǎng)為半徑的圓周長(zhǎng)(2πb)加上四倍的該橢圓長(zhǎng)半軸長(zhǎng)(a)與短半軸長(zhǎng)(b)的差.
3、橢圓面積公式:s=πab
4、橢圓面積定理:橢圓的面積等于圓周率(π)乘該橢圓長(zhǎng)半軸長(zhǎng)(a)與短半軸長(zhǎng)(b)的乘積。
以上橢圓周長(zhǎng)、面積公式中雖然沒有出現(xiàn)橢圓周率t,但這兩個(gè)公式都是通過橢圓周率t推導(dǎo)演變而來。
兩角和公式
1、sin(a+b)=sinacosb+cosasinbsin(a-b)=sinacosb-sinbcosa
2、cos(a+b)=cosacosb-sinasinbcos(a-b)=cosacosb+sinasinb
3、tan(a+b)=(tana+tanb)/(1-tanatanb)tan(a-b)=(tana-tanb)/(1+tanatanb)
4、ctg(a+b)=(ctgactgb-1)/(ctgb+ctga)ctg(a-b)=(ctgactgb+1)/(ctgb-ctga)
倍角公式
1、tan2a=2tana/(1-tan2a)ctg2a=(ctg2a-1)/2ctga
2、cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a
半角公式
1、sin(a/2)=√((1-cosa)/2)sin(a/2)=-√((1-cosa)/2)
2、cos(a/2)=√((1+cosa)/2)cos(a/2)=-√((1+cosa)/2)
3、tan(a/2)=√((1-cosa)/((1+cosa))tan(a/2)=-√((1-cosa)/((1+cosa))
4、ctg(a/2)=√((1+cosa)/((1-cosa))ctg(a/2)=-√((1+cosa)/((1-cosa))
和差化積
1、2sinacosb=sin(a+b)+sin(a-b)2cosasinb=sin(a+b)-sin(a-b)
2、2cosacosb=cos(a+b)-sin(a-b)-2sinasinb=cos(a+b)-cos(a-b)
3、sina+sinb=2sin((a+b)/2)cos((a-b)/2cosa+cosb=2cos((a+b)/2)sin((a-b)/2)
4、tana+tanb=sin(a+b)/cosacosbtana-tanb=sin(a-b)/cosacosb
5、ctga+ctgbsin(a+b)/sinasinb-ctga+ctgbsin(a+b)/sinasinb
等差數(shù)列
1、等差數(shù)列的通項(xiàng)公式為:
an=a1+(n-1)d(1)
2、前n項(xiàng)和公式為:
Sn=na1+n(n-1)d/2或Sn=n(a1+an)/2(2)
從(1)式可以看出,an是n的一次數(shù)函(d≠0)或常數(shù)函數(shù)(d=0),(n,an)排在一條直線上,由(2)式知,Sn是n的二次函數(shù)(d≠0)或一次函數(shù)(d=0,a1≠0),且常數(shù)項(xiàng)為0.
在等差數(shù)列中,等差中項(xiàng):一般設(shè)為Ar,Am+An=2Ar,所以Ar為Am,An的等差中項(xiàng),且任意兩項(xiàng)am,an的關(guān)系為:
an=am+(n-m)d
它可以看作等差數(shù)列廣義的通項(xiàng)公式.
3、從等差數(shù)列的定義、通項(xiàng)公式,前n項(xiàng)和公式還可推出:
a1+an=a2+an-1=a3+an-2=…=ak+an-k+1,k∈{1,2,…,n}
若m,n,p,q∈N*,且m+n=p+q,則有
am+an=ap+aq
Sm-1=(2n-1)an,S2n+1=(2n+1)an+1
Sk,S2k-Sk,S3k-S2k,…,Snk-S(n-1)k…或等差數(shù)列,等等.
和=(首項(xiàng)+末項(xiàng))*項(xiàng)數(shù)÷2
項(xiàng)數(shù)=(末項(xiàng)-首項(xiàng))÷公差+1
首項(xiàng)=2和÷項(xiàng)數(shù)-末項(xiàng)
末項(xiàng)=2和÷項(xiàng)數(shù)-首項(xiàng)
項(xiàng)數(shù)=(末項(xiàng)-首項(xiàng))/公差+1
等比數(shù)列
1、等比數(shù)列的通項(xiàng)公式是:An=A1*q^(n-1)
2、前n項(xiàng)和公式是:Sn=[A1(1-q^n)]/(1-q)
且任意兩項(xiàng)am,an的關(guān)系為an=am·q^(n-m)
3、從等比數(shù)列的定義、通項(xiàng)公式、前n項(xiàng)和公式可以推出:a1·an=a2·an-1=a3·an-2=…=ak·an-k+1,k∈{1,2,…,n}
4、若m,n,p,q∈N*,則有:ap·aq=am·an,
等比中項(xiàng):aq·ap=2arar則為ap,aq等比中項(xiàng).
記πn=a1·a2…an,則有π2n-1=(an)2n-1,π2n+1=(an+1)2n+1
另外,一個(gè)各項(xiàng)均為正數(shù)的等比數(shù)列各項(xiàng)取同底數(shù)數(shù)后構(gòu)成一個(gè)等差數(shù)列;反之,以任一個(gè)正數(shù)C為底,用一個(gè)等差數(shù)列的各項(xiàng)做指數(shù)構(gòu)造冪Can,則是等比數(shù)列.在這個(gè)意義下,我們說:一個(gè)正項(xiàng)等比數(shù)列與等差數(shù)列是“同構(gòu)”的.
性質(zhì):①若m、n、p、q∈N,且m+n=p+q,則am·an=ap*aq;
②在等比數(shù)列中,依次每k項(xiàng)之和仍成等比數(shù)列.
“G是a、b的等比中項(xiàng)”“G^2=ab(G≠0)”.
在等比數(shù)列中,首項(xiàng)A1與公比q都不為零.
拋物線
1、拋物線:y=ax*+bx+c就是y等于ax的平方加上bx再加上c。
a>0時(shí),拋物線開口向上;a<0時(shí)拋物線開口向下;c=0時(shí)拋物線經(jīng)過原點(diǎn);b=0時(shí)拋物線對(duì)稱軸為y軸。
2、頂點(diǎn)式y(tǒng)=a(x+h)*+k就是y等于a乘以(x+h)的平方+k,-h是頂點(diǎn)坐標(biāo)的x,k是頂點(diǎn)坐標(biāo)的y,一般用于求最大值與最小值。
3、拋物線標(biāo)準(zhǔn)方程:y^2=2px它表示拋物線的焦點(diǎn)在x的正半軸上,焦點(diǎn)坐標(biāo)為(p/2,0)。
4、準(zhǔn)線方程為x=-p/2由于拋物線的焦點(diǎn)可在任意半軸,故共有標(biāo)準(zhǔn)方程:y^2=2pxy^2=-2pxx^2=2pyx^2=-2py。
一、正余弦定理
正弦定理:a/sinA=b/sinB=c/sinC=2R R為三角形外接圓的半徑
余弦定理:a2=b2+c2-2bc*cosA
二、誘導(dǎo)公式
一:設(shè)α為任意角,終邊相同的角的同一三角函數(shù)的值相等:
sin(2kπ+α)=sinα(k∈Z)cos(2kπ+α)=cosα(k∈Z)tan(2kπ+α)=tanα(k∈Z)cot(2kπ+α)=cotα(k∈Z)
二:設(shè)α為任意角,π+α的三角函數(shù)值與α的三角函數(shù)值之間的關(guān)系:
sin(π+α)=-sinαcos(π+α)=-cosαtan(π+α)=tanαcot(π+α)=cotα
三:任意角α與-α的三角函數(shù)值之間的關(guān)系:
sin(-α)=-sinαcos(-α)=cosαtan(-α)=-tanαcot(-α)=-cotα
四:利用公式二和公式三可以得到π-α與α的三角函數(shù)值之間的關(guān)系:
sin(π-α)=sinαcos(π-α)=-cosαtan(π-α)=-tanαcot(π-α)=-cotα
五:利用公式一和公式三可以得到2π-α與α的三角函數(shù)值之間的關(guān)系:
sin(2π-α)=-sinαcos(2π-α)=cosαtan(2π-α)=-tanαcot(2π-α)=-cotα
六:π/2±α及3π/2±α與α的三角函數(shù)值之間的關(guān)系:
sin(π/2+α)=cosαcos(π/2+α)=-sinαtan(π/2+α)=-cotαcot(π/2+α)=-tanαsin(π/2-α)=cosαcos(π/2-α)=sinαtan(π/2-α)=cotαcot(π/2-α)=tanαsin(3π/2+α)=-cosαcos(3π/2+α)=sinα更多信息,點(diǎn)擊查看高考數(shù)學(xué)32條秒殺公式
三、兩角和公式
sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA
cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB
tan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB)
ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA) ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)
四、倍角公式
tan2A=2tanA/(1-tan2A) ctg2A=(ctg2A-1)/2ctga
cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a
五、半角公式
sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)
cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)
tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA))
ctg(A/2)=√((1+cosA)/((1-cosA)) ctg(A/2)=-√((1+cosA)/((1-cosA))
六、和差化積
2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B)
2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B)
sinA+sinB=2sin((A+B)/2)cos((A-B)/2 cosA+cosB=2cos((A+B)/2)sin((A-B)/2)
tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosB
ctgA+ctgBsin(A+B)/sinAsinB -ctgA+ctgBsin(A+B)/sinAsinB
七、某些數(shù)列前n項(xiàng)和
1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2 1+3+5+7+9+11+13+15+…+(2n-1)=n2
2+4+6+8+10+12+14+…+(2n)=n(n+1) 12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/6
13+23+33+43+53+63+…n3=n2(n+1)2/4 1*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3
積分公式有哪些呢,高數(shù)常用的積分公式有什么呢,下面小編為大家提供常用的積分公式大全,僅供大家參考。
很多孩子都抱怨:數(shù)學(xué)難學(xué)!學(xué)數(shù)學(xué)真苦真累,成天泡在題海中,成績(jī)還是不理想。高考就讓這數(shù)學(xué)拖后腿了。下面有途高考網(wǎng)小編整理了《高中數(shù)學(xué)沒學(xué)好最...
數(shù)學(xué)對(duì)于不少學(xué)生來說是一件頭疼的事,上課聽不明白,做題又不會(huì),那怎么辦才好呢?下面有途高考網(wǎng)小編整理了《如何學(xué)好高中數(shù)學(xué) 數(shù)學(xué)學(xué)習(xí)方法》,希...
1/sinx不定積分是ln|cscx - cotx| + C。微積分中,一個(gè)函數(shù)f的不定積分,或原函數(shù),或反導(dǎo)數(shù),是一個(gè)導(dǎo)數(shù)等于f的函數(shù)F,...
線性代數(shù)tr(trace)是矩陣對(duì)角線上各元素的和。線性代數(shù)是數(shù)學(xué)的一個(gè)分支,它的研究對(duì)象是向量、向量空間(或稱線性空間)、線性變換和有限維...
只有一個(gè)。同濟(jì)《線性代數(shù)》(第五版)第61頁(yè)明確說明:一個(gè)矩陣的行最簡(jiǎn)形矩陣是“唯一確定”的!行最簡(jiǎn)形矩陣,是指線性代數(shù)中的某一類特定形式的...
高等數(shù)學(xué)a類是理工科本科各專業(yè)學(xué)生的一門公共必修的重要基礎(chǔ)理論課,主要偏向于理工科的知識(shí)結(jié)構(gòu)范圍;高等數(shù)學(xué)b類是生物、化學(xué)相關(guān)本科專業(yè)學(xué)生的...
數(shù)學(xué)主觀題的題型有簡(jiǎn)答題、應(yīng)用題等。主觀題也稱自由應(yīng)答型試題。此類試題對(duì)于考查考生的語(yǔ)言表達(dá)能力、思維創(chuàng)新能力等方面有獨(dú)到的功能,但評(píng)分容易...
cscx不定積分是ln|tan(x/2)|+C。在直角三角形中,斜邊與某個(gè)銳角的對(duì)邊的比值叫做該銳角的余割,也就是cscx。余割與正弦的比值...
很多小伙伴們?cè)谏蠈W(xué)的時(shí)候數(shù)學(xué)都不怎么好,那么高三數(shù)學(xué)不好要怎么補(bǔ)救呢?下面是小編整理的相關(guān)信息,感興趣的小伙伴們快來查閱吧。
等差數(shù)列是常見的一種數(shù)列。那等差數(shù)列公式通項(xiàng)公式?下面,就跟小編一起來了解一下吧。
等比數(shù)列前n項(xiàng)和公式是怎么推導(dǎo)的?想必許多同學(xué)對(duì)這個(gè)問題存有疑惑。下面,就跟小編一起來看看吧。
很多小伙伴都會(huì)學(xué)到等比數(shù)列前n項(xiàng)和,那么它的公式是什么,如何運(yùn)用呢?下面是小編整理的相關(guān)信息,感興趣的小伙伴們快來查閱吧。
泰勒公式展開式都有哪些?下面,小編整理了一些常見的泰勒公式展開式,希望對(duì)你們有幫助。
等比數(shù)列的前n項(xiàng)和公式是什么?相信有些同學(xué)對(duì)這個(gè)問題還存有疑惑。下面,就跟小編一起來了解一下吧。